# A tibble: 6 x 4
country year type count
<chr> <dbl> <chr> <dbl>
1 Afghanistan 2000 cases 2666
2 Afghanistan 2000 population 20595360
3 Brazil 2000 cases 80488
4 Brazil 2000 population 174504898
5 China 2000 cases 213766
6 China 2000 population 1280428583
Quand un Messy Data ne peut se transformer en Tidy Data
query_kernel ="SELECT nom_dpt, geometry as circonscription, "+ query_param +" as point, ST_Contains(geometry,"+ query_param +") as point_in_circo FROM assemblee_elective.circonscription;"query_kernel
'SELECT nom_dpt, geometry as circonscription, ST_SetSRID(ST_MakePoint(7.179495 , 47.9343092),4326) as point, ST_Contains(geometry,ST_SetSRID(ST_MakePoint(7.179495 , 47.9343092),4326)) as point_in_circo FROM assemblee_elective.circonscription;'
cursor = conn.cursor()cursor.execute(query_kernel)print("Voci le résultat ci-dessous : ")
Voci le résultat ci-dessous :
mobile_records = cursor.fetchall()mobile_records[292] # Mon adresse appartient bien à la belle circonscription du HAUT-RHIN
Lowndes, Julia, and Allison Horst. 2020. “Illustrations from the Openscapes Blog Tidy Data for Reproducibility, Efficiency, and Collaboration by Julia Lowndes and Allison Horst.”https://allisonhorst.com/other-r-fun.